"Pediatric Aero-Digestive Disorders in the New Century"

A Valley-Mount Sinai Kravis Children's Hospital educational symposium.

CHILDREN'S HEALTH

Changing Pharmacology of Acid Suppression in Pediatric GERD

J. Antonio Quiros MD DHA FAAP FACG

Clinical Professor of Pediatrics

Icahn School of Medicine at Mount Sinai Hospital

CHILDREN'S HEALTH

Faculty Disclosure

There are no commercial products or services being discussed

No financial disclosures

No unlabeled use of a product is being discussed

Objectives

- Know three potential risk factors associated with suppression of gastric acid.
- Describe at least 2 mechanisms to control of acid production in the stomach
- List at least 5 conditions in differential of reported "heartburn"

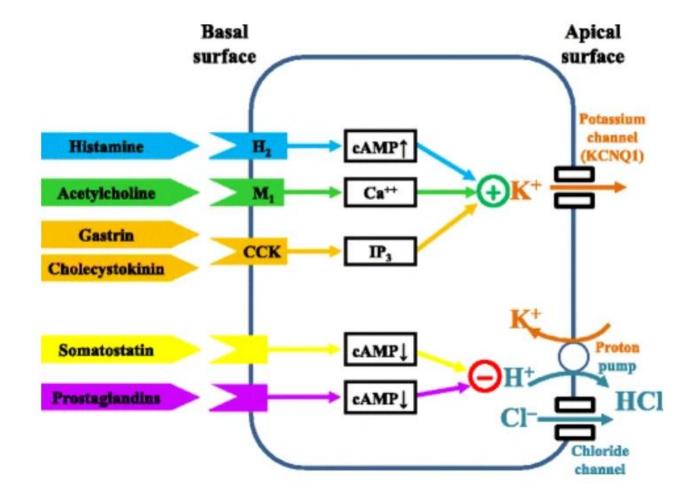
Mount Sinai Kravis Children's Hospital

TREATMENTS for GE REFLUX (DISEASE)

Tips on therapy

- 1. Set the RIGHT expectation
- 2. Select the right combination of interventions
- 3. Understand the short and long-term consequences of interventions

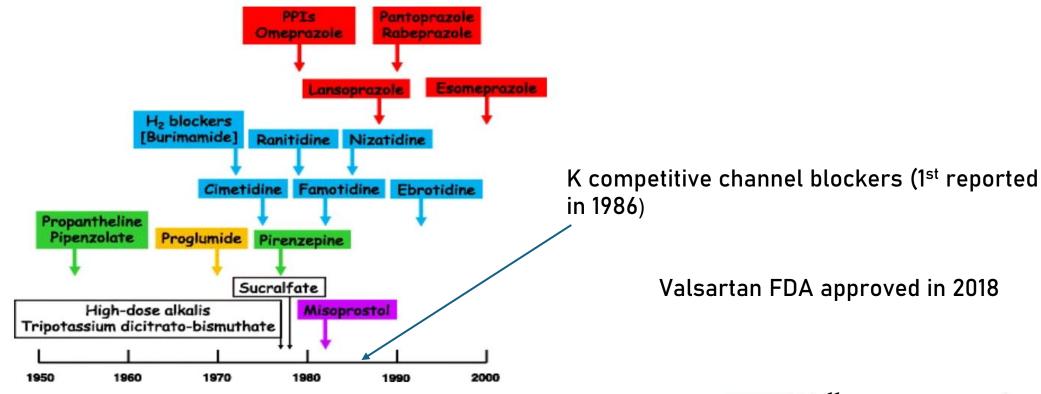
Tips on therapy


1. Set the RIGHT expectation

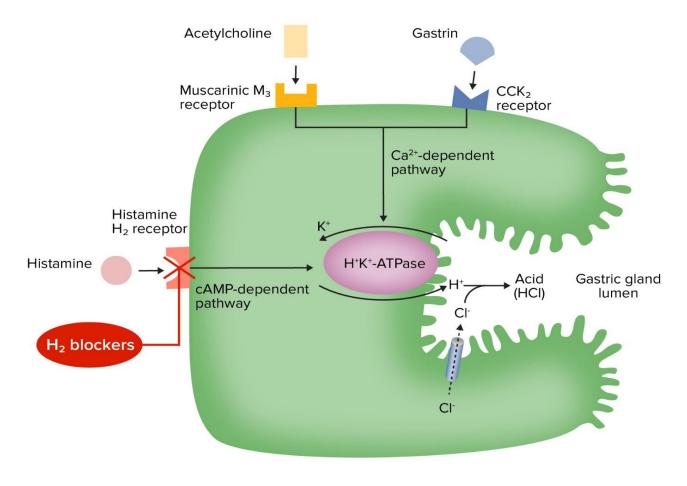
- 1. In infants fussiness is not always reflux
- 2. In older kids reflux is not always just "GERD" and further testing might be needed including upper endoscopy.
- 2. Select the right combination of interventions
- 3. Understand the short and long-term consequences of interventions

TREATMENTS:

ACID SUPPRESSION


Parietal cell physiology

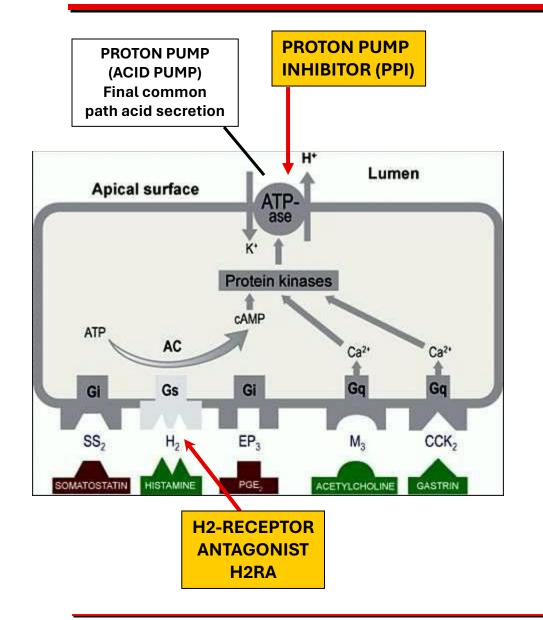
History of our attempts to manage acid


Treatment: Role of Acid Suppression

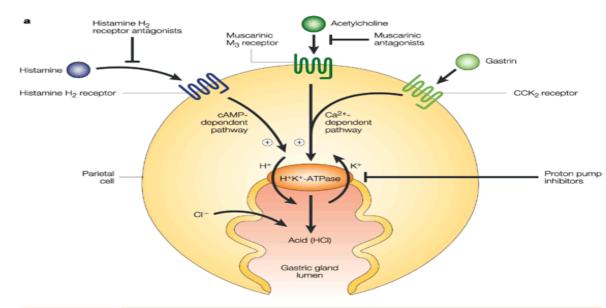
 Histamine₂-receptor antagonists (H₂RAs) produce relief of symptoms and mucosal healing. Grade A

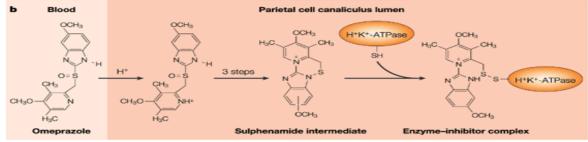
 PPIs are superior to H₂RAs in relieving symptoms and healing esophagitis. Grade A

H2 Blockers Mechanism of Action



HCL Acid Suppression: Parietal Cell

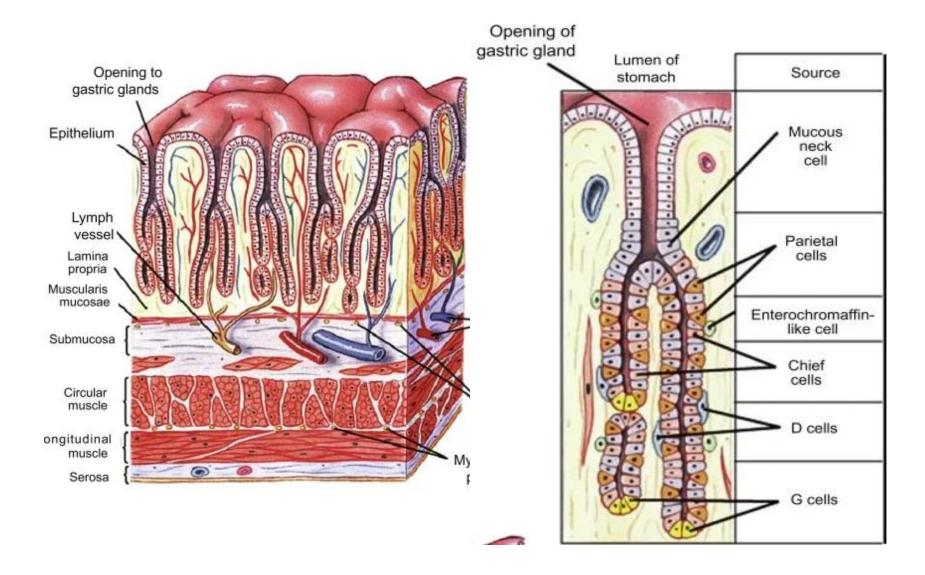

H2RA

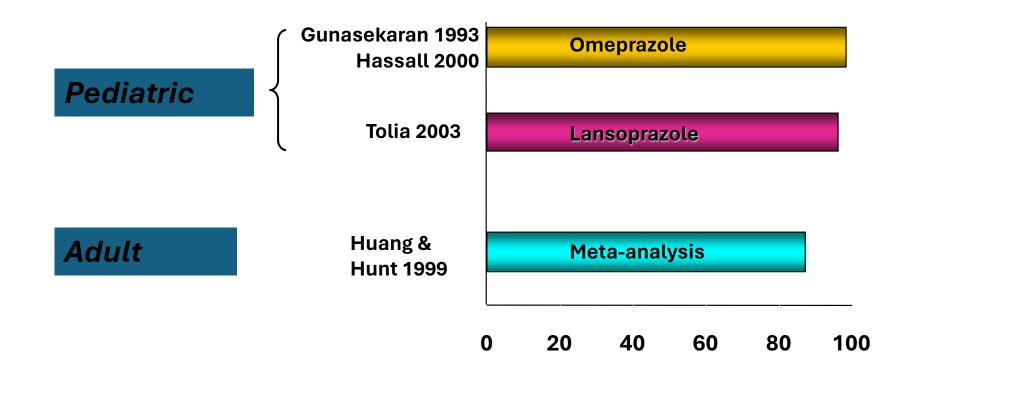

- Active drug available to block receptor soon after absorption 'On-demand' use
- Tachyphylaxis
- Fail to block meal-stimulated acid secretion

PPI

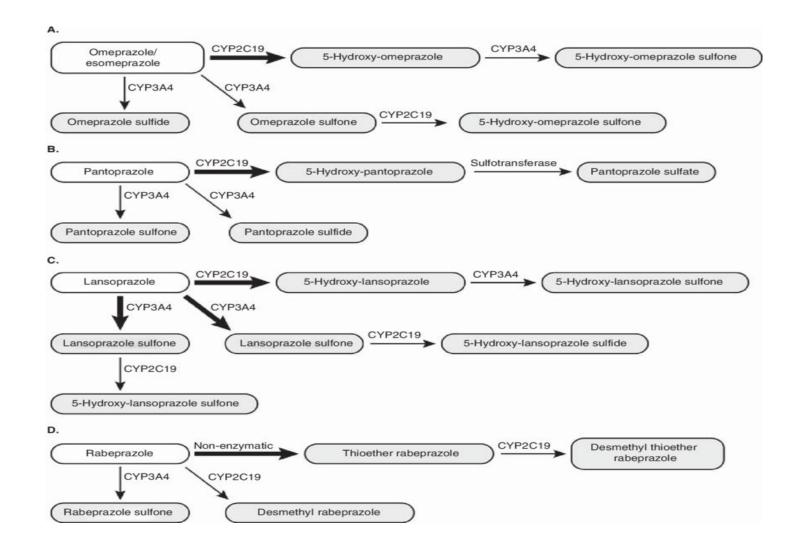
- Coated: protect v gastric acid
- Absorbed small bowel
- Pro-drug to active sulfenamide
- Secreted into lumen, binds only new/active acid pumps: take before breakfast Delayed action

PPI (omeprazole) mechanism of action

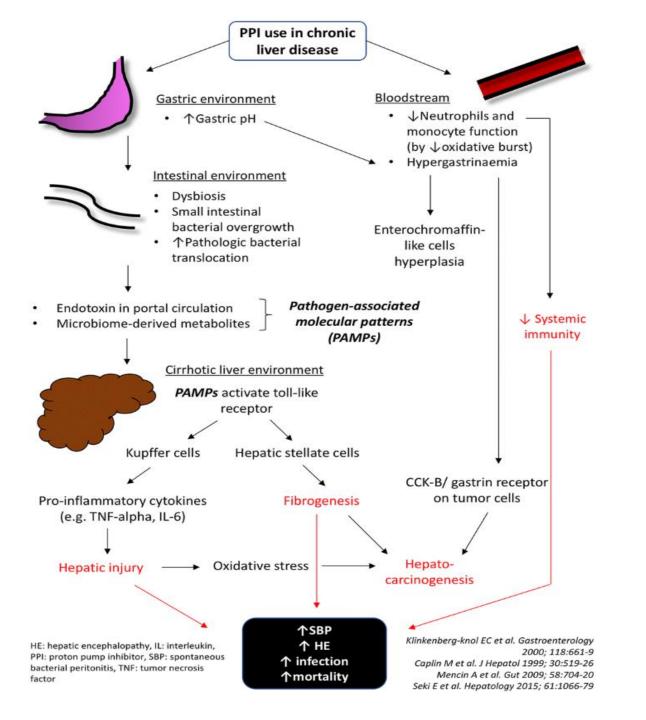




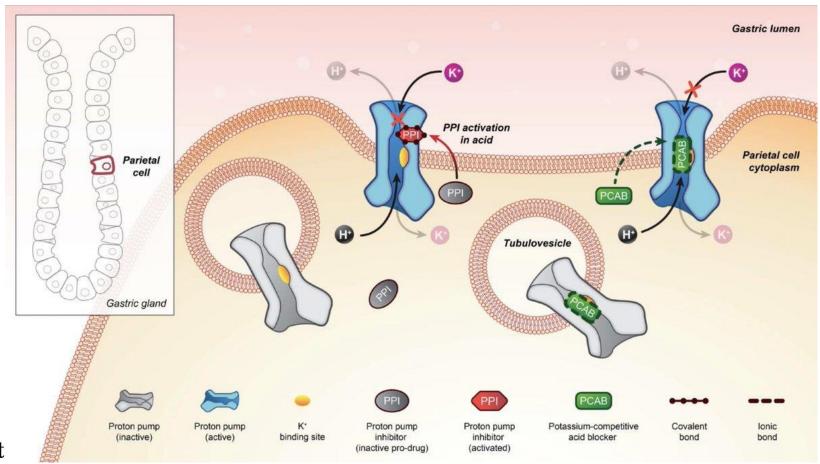
PPI excretion image



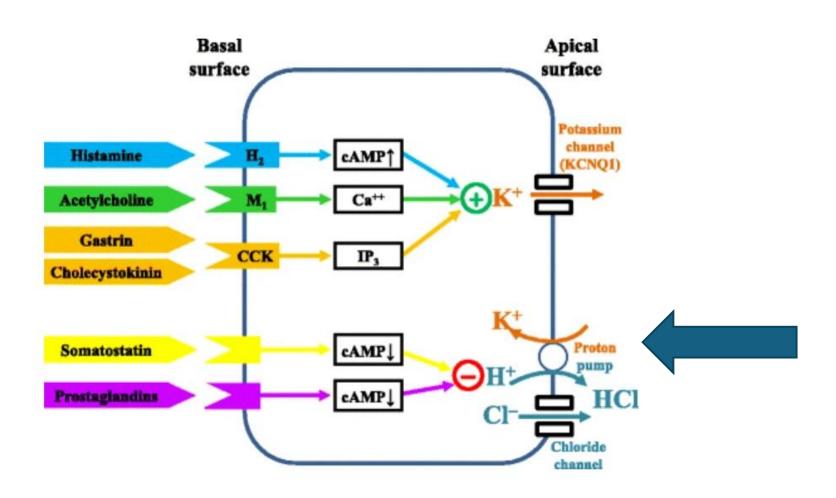
Similar PPI Healing Rates In Adults & Children: Short-term Erosive esophagitis


Gunasekaran, J Pediatr 1993 Hassall, J Pediatr 2000 Tolia, JPGN 2003 Huang & Hunt, Gut 1999

Metabolism of PPIs



PCAB mechanism of action



Characteristics of Children Receiving PPIs for up to 11 years Duration

- 1989–2004, 166 children Rx PPIs continuously (median 3yr, max 11yr)
- 79% had at least 1 GERD-predisposing condition
 - neuromotor, esophageal atresia
- 15% failed fundoplication before or after starting PPI
- Barrett's 10%, hiatal hernia 40%
- Side-effects: headache, constipation, diarrhea, agitation
- Safe and effective in preventing relapse

Potassium Competitive Channel Blockers

Treatment: Role of Acid Suppression

 For the treatment of chronic heartburn in older children or adolescents, lifestyle changes with a 4-week PPI trial are recommended. Grade A

 If symptoms resolve, continue PPI for 3 months. If chronic heartburn persists or recurs after treatment, it is recommended that the patient be referred to a ped gastroenterologist. Grade C

Tips on therapy

1. Set the RIGHT expectation

2. Select the right combination of interventions

- Relief of acute symptoms is different than long term acid suppression
- 2. Delayed gastric emptying due to other factors needs to be always kept in mind.
- 3. Value important of "lifestyle" changes at home.
- 3. Understand the short and long-term consequences of interventions

Range of approaches to GER/D: Infants

- Doing nothing: watch & wait
- Positioning
- Eliminate exposure to smoke
- 'Non-nutritive sucking' (pacifier)
- Thickened feedings
- Trial of hypoallergenic formula
- Longer feed infusion/transpyloric

Range of approaches to GER/D: Older children/adults

- Weight loss
- Decrease fatty foods/raw onions/caffeine
- Don't eat within 2-3 hours of bedtime
- Elevate head of bed on 6" blocks
- Antacids, eg, Gaviscon, Maalox, Mylanta, Tums, etc
- Prokinetics: metoclopramide, domperidone, Erythromycin
- Acid suppressing agents
- Surgery

Tips on therapy

- 1. Set the RIGHT expectation
- 2. Select the right combination of interventions

3. Understand the short and long-term consequences of interventions

- Risks of asthma with acid suppression use in infants a concerning development
- 2. Dysbiosis needs to be considered for complaints in child with long term use of acid suppression therapy.
- 3. Consider all the options for treatment (including surgery).

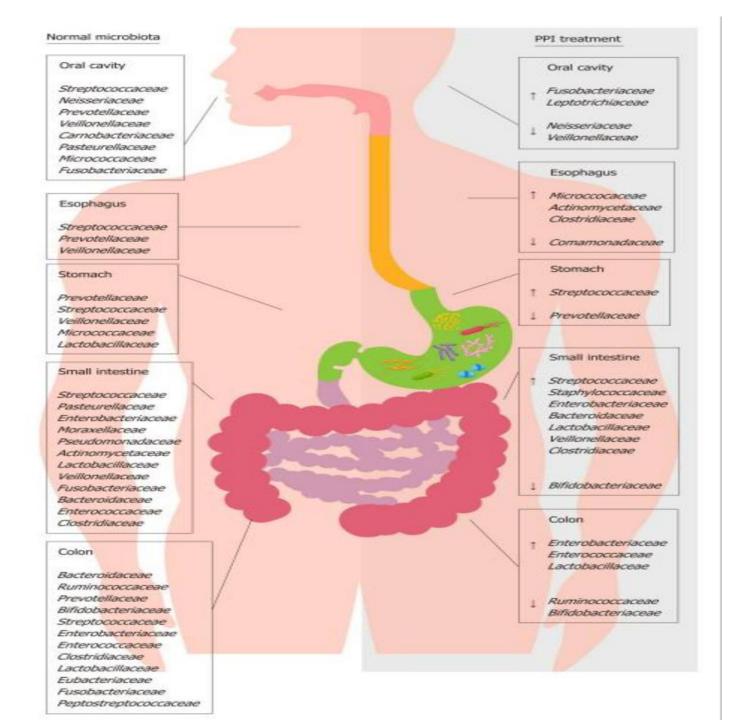
Adverse effects of acid suppression: H2RA or PPI

- Acute gastro & community-acquired pneumonia. Canani. Peds '06
- Necrotizing enterocolitis. Guillet. Peds 2006
- Candida in NICU. Saiman. Ped Infect Dis J 2001
- C. difficile-associated disease. Dial S. JAMA 2005
- Community-acquired pneumonia. Laheij. JAMA 2004
- Bacterial gastroenteritis. Garcia Rodriguez. Clin Gastro Hep 2007
- B12 deficiency in older adults. Valuck. J Clin Epidemiol 2004
- Hip fracture. Yang. JAMA 2006
- Vitamin B12 in elderly individuals: refuted. den Elzen. APT 2008

Gastric acid has purpose - suppression may cause problems Risk / Benefit

Risks associated with long term PPI use

Digestive Diseases and Sciences (2018) 63:2940–2949 https://doi.org/10.1007/s10620-018-5122-4


ORIGINAL ARTICLE

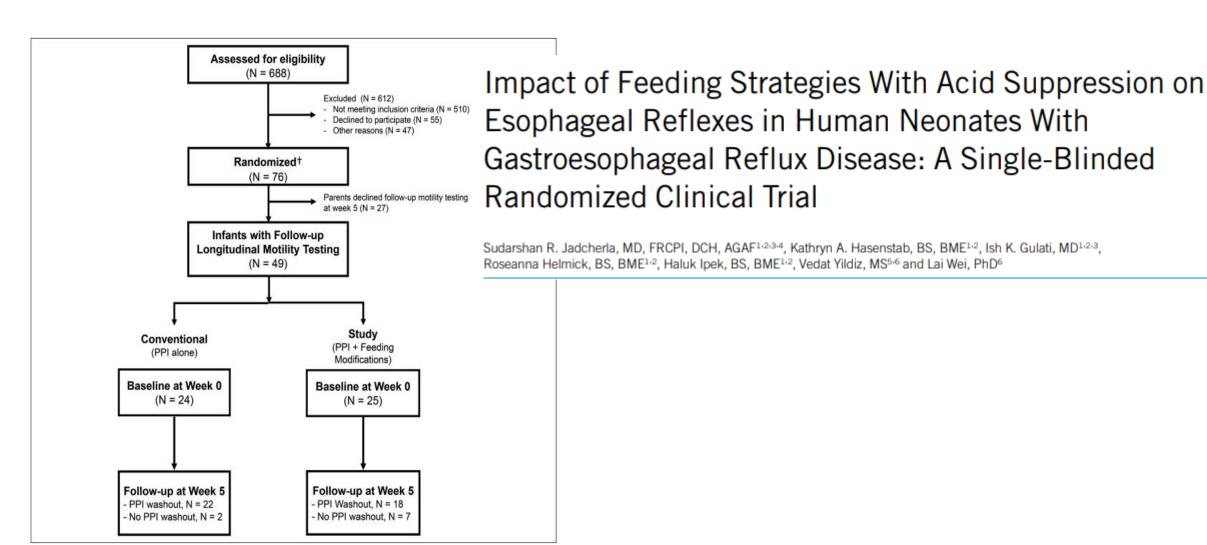
Gut Microbiota Composition Before and After Use of Proton Pump Inhibitors

Mariko Hojo¹ · Takashi Asahara^{2,3} · Akihito Nagahara¹ · Tsutomu Takeda⁴ · Kohei Matsumoto¹ · Hiroya Ueyama¹ · Kenshi Matsumoto¹ · Daisuke Asaoka⁴ · Takuya Takahashi^{2,3} · Koji Nomoto^{3,5} · Yuichiro Yamashiro² · Sumio Watanabe¹

Received: 17 February 2018 / Accepted: 10 May 2018 / Published online: 24 May 2018 © The Author(s) 2018

Risks of PPI use and RAD

	PPI initiators			Noninitiators					
Analysis	No. of patients	No. of events	Incidence rate, events per 1000 person-years	No. of patients	No. of events	Incidence rate, events per 1000 person-years	Hazard ratio (95% CI)	PPI decreases risk	PPI increases risk
Primary result	80870	4428	21.8	80870	2818	14.0	1.57 (1.49-1.64)		H
Alternative asthma definition									
Primary diagnosis of asthma OR 2 asthmatic prescriptions within 90 d	80870	4331	21.3	80870	2764	13.7	1.56 (1.49-1.64)		н
Primary diagnosis of asthma OR 2 asthmatic prescriptions within 60 d	80870	4160	20.5	80870	2653	13.1	1.56 (1.49-1.64)		H
Any asthma diagnosis AND asthmatic prescription within 60 d	80870	1438	6.9	80870	861	4.2	1.65 (1.52-1.80)		H - H
Restriction to asthma event without short-acting inhaled bronchodilators	80870	4428	21.8	80870	2818	14.0	1.57 (1.49-1.64)		н
As-treated analysis	80870	222	24.9	80870	2783	13.9	1.46 (1.24-1.73)		⊢ −−
Adopted high-dimensional propensity score matching	78695	4104	20.7	78695	2757	14.0	1.48 (1.41-1.55)		H
Analysis for H ₂ RA use vs nonuse	15680	1325	32.8	15680	858	21.0	1.56 (1.43-1.70)		⊢
Excluded any asthma diagnosis and asthmatic prescription before index date ^a	68 449	3446	19.7	69531	2115	11.9	1.65 (1.56-1.74)		H
Restricted to patients without PPI combined therapy at index date	77134	4238	21.9	80870	2818	14.0	1.57 (1.50-1.65)		H
Redefined length of follow-up to a maximum 1 y	80870	2163	27.6	80870	1343	17.1	1.61 (1.51-1.72)		н
								0.5 HR (9	2 5% CI)


H₂RA indicates histamine 2 receptor antagonist; HR, hazard ratio.

^{*} Excluded any asthma diagnosis or prescription in all available look-back before index date.

Treatment: Role of Acid Suppression in Infants

 In otherwise normal infants with unexplained crying, irritability, or distressed behavior, there is no evidence to support acid suppression. Grade A

Acid suppression trial in infant dysphagia?

SUMMARY

- Certain groups children predisposed to chronic, relapsing GERD
- In otherwise healthy children, GERD often not chronic
- Infants: GERD is infrequent cause of unexplained crying / 'irritability' in otherwise healthy children
 - consider colic, milk protein allergy, constipation, UTI
 - nonpharmacologic first-line approach, rather than acid suppression
- Eosinophilic esophagitis and GERD have similar symptoms
 - don't treat empirically with steroids: EoE is not a clinical diagnosis
 - partial treatment makes diagnosis more difficult
- Symptoms severe/ atypical/dysphagia don't treat empirically:
 Get diagnosis

SUMMARY

- If empiric trial acid suppression: time-limited, taper off drug:
 Get diagnosis
- On-demand therapy: antacids, H2RA (PCCB?)
- PPIs longer-term Rx: once daily, 15-30mins before breakfast Routine BID dosage unnecessary
- PPIs: don't stop them abruptly taper
- Acid suppression in general (H2RA, PPI and PCCB) may have adverse effects that are not immediately apparent
- Antireflux surgery
 - significant morbidity,
 - high failure rates, often early
 - STILL, indicated in selected patients
- Established chronic, relapsing GERD: surgery v long-term PPI

"Pediatric Aero-Digestive Disorders in the New Century"

A Valley-Mount Sinai Kravis Children's Hospital educational symposium.

CHILDREN'S HEALTH

